Market | Products | ||
I | 10000 | 2000 | 18000 |
II | 6000 | 20000 | 8000 |
(a) The unit sale prices of \(x, y\), and \(z\) are respectively given as Rs 2.50, Rs 1.50, and Rs 1.00. Consequently, the total revenue in market I can be represented in the form of a matrix as:
\(\begin{bmatrix}10000& 2000& 18000\end{bmatrix}\begin{bmatrix}2.50\\ 1.50\\ 1.00\end{bmatrix}\)
\(=10000\times2.50+2000\times1.50+18000\times1.00]\)
\(=25000+3000+18000\)
\(=46000\)
The total revenue in market II can be represented in the form of a matrix as:
\(\begin{bmatrix}6000& 20000& 8000\end{bmatrix}\begin{bmatrix}2.50\\ 1.50\\ 1.00\end{bmatrix}\)
\(=6000\times2.50+20000\times1.50+8000\times1.00\)
\(=15000+30000+8000\)
\(=53000\)
Therefore, the total revenue in market I is Rs 46000 and the same in market II is Rs 53000.
(b) The unit cost prices of x, y, and z are respectively given as Rs 2.00, Rs 1.00, and 50 paise.
Consequently, the total cost prices of all the products in market I can be represented in the form of a matrix as:
\(\begin{bmatrix}10000& 2000& 18000\end{bmatrix}\begin{bmatrix}2.00\\ 1.00\\ 0.50\end{bmatrix}\)
\(=10000\times2.00+2000\times1.00+18000\times0.50\)
\(=20000+2000+9000\)
\(=31000\)
Since the total revenue in market I is Rs 46000, the gross profit in this market is (Rs 46000−Rs 31000) Rs 15000.
The total cost prices of all the products in market II can be represented in the form of a matrix as:
\(\begin{bmatrix}6000& 20000& 8000\end{bmatrix}\begin{bmatrix}2.00\\ 1.00\\ 0.50\end{bmatrix}\)
\(=6000\times2.00+20000\times1.00+8000\times0.50\)
\(=12000+20000+4000\)
\(=Rs 36000\)
Since the total revenue in market II isRs 53000, the gross profit in this market is (Rs53000 − Rs 36000) Rs 17000.
Let $A = \begin{bmatrix} \cos \theta & 0 & -\sin \theta \\ 0 & 1 & 0 \\ \sin \theta & 0 & \cos \theta \end{bmatrix}$. If for some $\theta \in (0, \pi)$, $A^2 = A^T$, then the sum of the diagonal elements of the matrix $(A + I)^3 + (A - I)^3 - 6A$ is equal to
Let $ A $ be a $ 3 \times 3 $ matrix such that $ | \text{adj} (\text{adj} A) | = 81.
$ If $ S = \left\{ n \in \mathbb{Z}: \left| \text{adj} (\text{adj} A) \right|^{\frac{(n - 1)^2}{2}} = |A|^{(3n^2 - 5n - 4)} \right\}, $ then the value of $ \sum_{n \in S} |A| (n^2 + n) $ is:
The correct IUPAC name of \([ \text{Pt}(\text{NH}_3)_2\text{Cl}_2 ]^{2+} \) is: