Step 1: Define situation.
- Let the height of the lighthouse = \(KL\).
- Height of man = 6 m.
- Shadow length in first position = 24 m.
- Shadow length in second position (after 300 m east) = 30 m.
Step 2: Use similarity of triangles.
By geometry, the lighthouse, tip of shadow, and man form similar right triangles.
So,
\[
\frac{KL}{24} = \frac{LE}{30}
\]
where \(LE\) is the horizontal distance of the man in second position from lighthouse.
Step 3: Relationship between distances.
We know that:
\[
\frac{24}{30} = \frac{4}{5}
\]
Thus, if \(LC = 4x\), then \(LE = 5x\).
Step 4: Use Pythagoras in right triangle.
Triangle \(LBE\) is right-angled:
\[
(LE)^2 = (LB)^2 + (BE)^2
\]
Given: \(LB = 4x\), \(LE = 5x\), and \(BE = 300\).
So,
\[
(5x)^2 - (4x)^2 = 300^2
\]
\[
25x^2 - 16x^2 = 90000
\]
\[
9x^2 = 90000 \quad \Rightarrow \quad x^2 = 10000 \quad \Rightarrow \quad x = 100
\]
Step 5: Find distances.
- \(LB = 4x = 400\) m
- \(LE = 5x = 500\) m
- \(LC = LB + BC = 400 + 24 = 424\) m
Step 6: Find height of lighthouse.
Using similarity:
\[
\frac{KL}{24} = \frac{424}{4}
\]
\[
KL = \frac{424}{4} \times 24 = 106
\]
Final Answer:
\[
\boxed{106 \text{ meters}}
\]