A loop ABCD, carrying current $ I = 12 \, \text{A} $, is placed in a plane, consists of two semi-circular segments of radius $ R_1 = 6\pi \, \text{m} $ and $ R_2 = 4\pi \, \text{m} $. The magnitude of the resultant magnetic field at center O is $ k \times 10^{-7} \, \text{T} $. The value of $ k $ is ______ (Given $ \mu_0 = 4\pi \times 10^{-7} \, \text{T m A}^{-1} $)
$B_0 = |B_{R_1} - B_{R_2}|$
$B_0 = \left| \frac{\mu_0 I}{4R_2} - \frac{\mu_0 I}{4R_1} \right|$
$B_0 = \frac{4\pi \times 10^{-7} \times 12}{4} \left| \frac{1}{4\pi} - \frac{1}{6\pi} \right|$
$B_0 = 12\pi \times 10^{-7} \left| \frac{1}{12\pi} \right|$
$B_0 = 1 \times 10^{-7} T$
$k = 1$
A particle of charge $ q $, mass $ m $, and kinetic energy $ E $ enters in a magnetic field perpendicular to its velocity and undergoes a circular arc of radius $ r $. Which of the following curves represents the variation of $ r $ with $ E $?
0.5 g of an organic compound on combustion gave 1.46 g of $ CO_2 $ and 0.9 g of $ H_2O $. The percentage of carbon in the compound is ______ (Nearest integer) $\text{(Given : Molar mass (in g mol}^{-1}\text{ C : 12, H : 1, O : 16})$
Given: $ \Delta H_f^0 [C(graphite)] = 710 $ kJ mol⁻¹ $ \Delta_c H^0 = 414 $ kJ mol⁻¹ $ \Delta_{H-H}^0 = 436 $ kJ mol⁻¹ $ \Delta_{C-H}^0 = 611 $ kJ mol⁻¹
The \(\Delta H_{C=C}^0 \text{ for }CH_2=CH_2 \text{ is }\) _____\(\text{ kJ mol}^{-1} \text{ (nearest integer value)}\)
Consider the following reactions $ A + HCl + H_2SO_4 \rightarrow CrO_2Cl_2$ + Side Products Little amount $ CrO_2Cl_2(vapour) + NaOH \rightarrow B + NaCl + H_2O $ $ B + H^+ \rightarrow C + H_2O $ The number of terminal 'O' present in the compound 'C' is ______