Let \(P(t, t - 2, t)\) and \(Q(2s - 2, s, s)\) be the points where the line with direction ratios \(2, 1, 2\) meets the given lines.
The direction ratios (D.R.) of \(PQ\) are \(2, 1, 2\). Equating components:
\[ \frac{2s - 2 - t}{2} = \frac{s - t + 2}{1} = \frac{s - t}{2} \]
Solving these equations, we find \(t = 6\) and \(s = 2\).
Substitute \(t = 6\): \(P(6, 4, 6)\). Substitute \(s = 2\): \(Q(2, 2, 2)\).
The line \(PQ\) can be written as:
\[ \frac{x - 2}{2} = \frac{y - 2}{1} = \frac{z - 2}{2} = \lambda \]
Let \(F(2\lambda + 2, \lambda + 2, 2\lambda + 2)\) be the foot of the perpendicular. Since \(\overrightarrow{AF} \cdot \overrightarrow{PQ} = 0\), solving gives \(\lambda = 2\).
The coordinates of \(F\) are \((6, 4, 6)\). Distance \(AF\) is given by:
\[ AF = \sqrt{(6 - 1)^2 + (4 - 2)^2 + (6 - 12)^2} = \sqrt{65} \]
\[ l^2 = 65 \]
So, the correct answer is: 65
Let a line passing through the point $ (4,1,0) $ intersect the line $ L_1: \frac{x - 1}{2} = \frac{y - 2}{3} = \frac{z - 3}{4} $ at the point $ A(\alpha, \beta, \gamma) $ and the line $ L_2: x - 6 = y = -z + 4 $ at the point $ B(a, b, c) $. Then $ \begin{vmatrix} 1 & 0 & 1 \\ \alpha & \beta & \gamma \\ a & b & c \end{vmatrix} \text{ is equal to} $
A force \( \vec{f} = x^2 \hat{i} + y \hat{j} + y^2 \hat{k} \) acts on a particle in a plane \( x + y = 10 \). The work done by this force during a displacement from \( (0,0) \) to \( (4m, 2m) \) is Joules (round off to the nearest integer).