A line passing through the point $ P(a, 0) $ makes an acute angle $ \alpha $ with the positive $ x $-axis. Let this line be rotated about the point $ P $ through an angle $ \frac{\alpha}{2} $ in the clock-wise direction. If in the new position, the slope of the line is $ 2 - \sqrt{3} $ and its distance from the origin is $ \frac{1}{\sqrt{2}} $, then the value of $ 3a^2 \tan^2 \alpha - 2\sqrt{3} $ is
Show Hint
- When rotating lines, remember angle addition formulas
- Distance from point to line formula: \( \frac{|Ax_0 + By_0 + C|}{\sqrt{A^2 + B^2}} \)
- For \( \tan 15^\circ \), exact value is \( 2 - \sqrt{3} \)
- Simplify radicals by rationalizing denominators
Since $\alpha$ is acute, $\alpha = \frac{\pi}{6}$.
3. Find the Equation of the Rotated Line
The slope of the rotated line is $m = 2 - \sqrt{3}$.
The equation of the line passing through $(a, 0)$ with slope $m$ is $y = m(x - a)$ or $y = (2 - \sqrt{3})(x - a)$ or $(2-\sqrt{3})x - y - a(2-\sqrt{3}) = 0$.
The distance of this line from the origin $(0, 0)$ is given as $\frac{1}{\sqrt{2}}$. Use the distance formula: \[ \frac{|A*0 + B*0 + C|}{\sqrt{A^2 + B^2}} = \frac{1}{\sqrt{2}} \] \[ \frac{|-(2-\sqrt{3})a|}{\sqrt{(2-\sqrt{3})^2 + (-1)^2}} = \frac{1}{\sqrt{2}} \] \[ \frac{|(2-\sqrt{3})a|}{\sqrt{4 - 4\sqrt{3} + 3 + 1}} = \frac{1}{\sqrt{2}} \] \[ \frac{|(2-\sqrt{3})a|}{\sqrt{8 - 4\sqrt{3}}} = \frac{1}{\sqrt{2}} \] \[ \frac{(2-\sqrt{3})^2 a^2}{8 - 4\sqrt{3}} = \frac{1}{2} \] \[ \frac{(7 - 4\sqrt{3})a^2}{8 - 4\sqrt{3}} = \frac{1}{2} \] \[ a^2 = \frac{8 - 4\sqrt{3}}{2(7 - 4\sqrt{3})} \] \[ a^2 = \frac{4 - 2\sqrt{3}}{7 - 4\sqrt{3}} \] Rationalize the denominator by multiplying both numerator and denominator by $(7 + 4\sqrt{3})$: \[ a^2 = \frac{(4 - 2\sqrt{3})(7 + 4\sqrt{3})}{49 - 48} = 28 + 16\sqrt{3} - 14\sqrt{3} - 24 = 4 + 2\sqrt{3} \]
4. Evaluate the Expression
We need to find the value of $3a^2 \tan^2(\alpha) - 2\sqrt{3}$.
We know $a^2 = 4 + 2\sqrt{3}$ and $\tan^2(\alpha) = \tan^2(\frac{\pi}{6}) = (\frac{1}{\sqrt{3}})^2 = \frac{1}{3}$.