To solve this problem, we'll first understand the geometric setup and use basic trigonometry and geometry to derive the necessary equations. We are given that a line passes through the point \( P(a, 0) \) and makes an acute angle \( \alpha \) with the positive x-axis. The line is then rotated clockwise by \( \frac{\alpha}{2} \). In its new position, the slope is \( 2 - \sqrt{3} \) and its perpendicular distance from the origin is \( \frac{1}{\sqrt{2}} \).
The correct value, as derived from the problem and calculations, is 4, which matches with one of the provided options.
1. Understand the Geometry and Transformations
2. Find the Initial Slope ($\tan \alpha$)
3. Find the Equation of the Rotated Line
4. Evaluate the Expression
Answer: The value of $3a^2 \tan^2 \alpha - 2\sqrt{3}$ is 4.
So the answer is option 1.
Two circular discs of radius \(10\) cm each are joined at their centres by a rod, as shown in the figure. The length of the rod is \(30\) cm and its mass is \(600\) g. The mass of each disc is also \(600\) g. If the applied torque between the two discs is \(43\times10^{-7}\) dyne·cm, then the angular acceleration of the system about the given axis \(AB\) is ________ rad s\(^{-2}\).

Method used for separation of mixture of products (B and C) obtained in the following reaction is: 