Step 1: Equation for acceleration The acceleration of the system is given by:
\[ a_{\text{sys}} = \frac{(m_2 - m_1)}{m_1 + m_2} \cdot g. \]
Substitute \(a_{\text{sys}} = \frac{g}{8}\):
\[ \frac{(m_2 - m_1)}{m_1 + m_2} \cdot g = \frac{g}{8}. \]
Cancel \(g\) from both sides:
\[ \frac{m_2 - m_1}{m_1 + m_2} = \frac{1}{8}. \]
Step 2: Solve for \(\frac{m_2}{m_1}\) Rearrange the equation:
\[ 8(m_2 - m_1) = m_1 + m_2. \]
Simplify:
\[ 8m_2 - 8m_1 = m_1 + m_2. \]
Combine like terms:
\[ 8m_2 - m_2 = 8m_1 + m_1. \]
\[ 7m_2 = 9m_1. \]
Take the ratio:
\[ \frac{m_2}{m_1} = \frac{9}{7}. \]
Final Answer: \(\frac{m_2}{m_1} = 9 : 7\).
Let $ f: \mathbb{R} \to \mathbb{R} $ be a twice differentiable function such that $$ f''(x)\sin\left(\frac{x}{2}\right) + f'(2x - 2y) = (\cos x)\sin(y + 2x) + f(2x - 2y) $$ for all $ x, y \in \mathbb{R} $. If $ f(0) = 1 $, then the value of $ 24f^{(4)}\left(\frac{5\pi}{3}\right) $ is: