Step 1: Use Snell's Law of refraction
\[
n_1 \sin \theta_1 = n_2 \sin \theta_2
\]
Where:
- \( n_1 \) is the refractive index of air
- \( n_2 \) is the refractive index of water
- \( \theta_1 \) is the angle of incidence
- \( \theta_2 \) is the angle of refraction
Given:
- \( n_1 = 1 \)
- \( n_2 = 1.33 \)
- \( \theta_1 = 30^\circ \)
Substitute the values into Snell's Law:
\[
1 \times \sin(30^\circ) = 1.33 \times \sin(\theta_2)
\]
\[
\sin(\theta_2) = \frac{\sin(30^\circ)}{1.33} = \frac{0.5}{1.33} \approx 0.3759
\]
\[
\theta_2 = \sin^{-1}(0.3759) \approx 23.6^\circ
\]
Answer: Therefore, the angle of refraction in water is \( 23.6^\circ \). So, the correct answer is option (3).