Using Snell's law:
\[
n_1 \sin \theta_1 = n_2 \sin \theta_2
\]
Where:
- \( n_1 = 1 \) is the refractive index of air,
- \( n_2 = 1.33 \) is the refractive index of water,
- \( \theta_1 = 30^\circ \) is the angle of incidence in air.
Substituting the values:
\[
1 \times \sin 30^\circ = 1.33 \times \sin \theta_2
\]
\[
\sin \theta_2 = \frac{\sin 30^\circ}{1.33} = \frac{0.5}{1.33} = 0.3759
\]
\[
\theta_2 = \sin^{-1}(0.3759) = 22.2^\circ
\]
Thus, the angle of refraction in water is \( 22.2^\circ \).