The wavelength of light emitted from an LED is related to its energy gap by the formula:
\( \lambda = \frac{1240}{E_g} \),
where:
Substitute \( E_g = 1.42 \, \text{eV} \):
\( \lambda = \frac{1240}{1.42} \).
Perform the calculation: \( \lambda = 875 \, \text{nm} \, \text{(approximately)}. \)
Final Answer: 875 nm.
The graph shows the variation of current with voltage for a p-n junction diode. Estimate the dynamic resistance of the diode at \( V = -0.6 \) V.
In the given circuit, the equivalent resistance between points A and D is:
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is: