The initial speed of bullet is:
\(\frac{2}{5}×\frac{1}{2}mv^2=mL+msΔT\)
\(⇒\frac{v^2}{5}=2.5×10 ^4+125+200\)
\(⇒\frac{v^2}{5}=5×10^4\)
\(⇒ v = 500 \;m/s\)
A bob of mass \(m\) is suspended at a point \(O\) by a light string of length \(l\) and left to perform vertical motion (circular) as shown in the figure. Initially, by applying horizontal velocity \(v_0\) at the point ‘A’, the string becomes slack when the bob reaches at the point ‘D’. The ratio of the kinetic energy of the bob at the points B and C is:
The velocity-time graph of an object moving along a straight line is shown in the figure. What is the distance covered by the object between \( t = 0 \) to \( t = 4s \)?
The remainder when \( 64^{64} \) is divided by 7 is equal to:
x mg of Mg(OH)$_2$ (molar mass = 58) is required to be dissolved in 1.0 L of water to produce a pH of 10.0 at 298 K. The value of x is ____ mg. (Nearest integer) (Given: Mg(OH)$_2$ is assumed to dissociate completely in H$_2$O)
Kinetic energy of an object is the measure of the work it does as a result of its motion. Kinetic energy is the type of energy that an object or particle has as a result of its movement. When an object is subjected to a net force, it accelerates and gains kinetic energy as a result. Kinetic energy is a property of a moving object or particle defined by both its mass and its velocity. Any combination of motions is possible, including translation (moving along a route from one spot to another), rotation around an axis, vibration, and any combination of motions.