Given: Triangle \(ABC\) with side lengths \(35\,\text{m}, 40\,\text{m}, 50\,\text{m}\). A horse, cow and goat are tied at \(A,B,C\) respectively with equal rope length \(r=14\,\text{m}\). Animals graze only inside the field.
At each vertex, the animal grazes a circular sector of radius \(r\) subtended by the triangle’s interior angle at that vertex. Hence, total grazed area \[ \mathcal{A} \;=\; \frac{1}{2}r^2(\angle A+\angle B+\angle C). \] But in any triangle, \(\angle A+\angle B+\angle C=\pi\) radians \(\Rightarrow\) \[ \mathcal{A} \;=\; \frac{1}{2}\,r^2\,\pi. \] Here \(r=14\,\text{m}\), and each adjacent side at a vertex is longer than \(14\) m, so no sector is truncated by hitting the opposite side.
\[ \mathcal{A}=\frac{1}{2}\times 14^2 \times \pi \;=\; \frac{1}{2}\times 196 \times \pi \;=\; 98\pi\ \text{m}^2 \;\approx\; 307.88\ \text{m}^2. \]
Total grazed area: \(\boxed{98\pi\ \text{m}^2 \;(\approx 307.9\ \text{m}^2)}\).
Let \( A = \begin{bmatrix} \frac{1}{\sqrt{2}} & -2 \\ 0 & 1 \end{bmatrix} \) and \( P = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}, \theta > 0. \) If \( B = P A P^T \), \( C = P^T B P \), and the sum of the diagonal elements of \( C \) is \( \frac{m}{n} \), where gcd(m, n) = 1, then \( m + n \) is:
आप अदिति / आदित्य हैं। आपकी दादीजी को खेलों में अत्यधिक रुचि है। ओलंपिक खेल-2024 में भारत के प्रदर्शन के बारे में जानकारी देते हुए लगभग 100 शब्दों में पत्र लिखिए।