For pure rolling motion, mechanical energy is conserved. At the initial position (\( A \)), the ball has kinetic energy due to both translational and rotational motion, and at the maximum height (\( B \)), all the kinetic energy is converted into potential energy.
Step 1: Write the conservation of energy equation. The total mechanical energy at \( A \) is: \[ \text{(M.E.)}_A = \frac{1}{2} m v_0^2 + \frac{1}{2} I \omega^2, \] where \( m \) is the mass of the ball, \( v_0 = 3 \, \text{m/s} \) is the initial velocity, \( I \) is the moment of inertia of the hollow sphere (\( I = \frac{2}{3} m R^2 \)), and \( \omega = \frac{v_0}{R} \) is the angular velocity. At the maximum height (\( B \)), all kinetic energy is converted into potential energy: \[ \text{(M.E.)}_B = m g h_{\text{max}}, \] where \( h_{\text{max}} \) is the maximum height. Using energy conservation: \[ \text{(M.E.)}_A = \text{(M.E.)}_B. \]
Step 2: Substitute the expressions. \[ \frac{1}{2} m v_0^2 + \frac{1}{2} \left(\frac{2}{3} m R^2\right) \left(\frac{v_0}{R}\right)^2 = m g h_{\text{max}}. \] Simplify: \[ \frac{1}{2} m v_0^2 + \frac{1}{3} m v_0^2 = m g h_{\text{max}}. \] Combine terms: \[ \frac{1}{2} + \frac{1}{3} = \frac{3}{6} + \frac{2}{6} = \frac{5}{6}. \] \[ \frac{5}{6} m v_0^2 = m g h_{\text{max}}. \] Cancel \( m \) on both sides: \[ h_{\text{max}} = \frac{\frac{5}{6} v_0^2}{g}. \]
Step 3: Substitute values. Substitute \( v_0 = 3 \, \text{m/s} \) and \( g = 10 \, \text{m/s}^2 \): \[ h_{\text{max}} = \frac{\frac{5}{6} \cdot (3)^2}{10}. \] Simplify: \[ h_{\text{max}} = \frac{\frac{5}{6} \cdot 9}{10} = \frac{45}{60} = 0.75 \, \text{m}. \] Convert to centimeters: \[ h_{\text{max}} = 0.75 \times 100 = 75 \, \text{cm}. \]
Final Answer: The maximum height covered is: \[ \boxed{75 \, \text{cm}}. \]
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is: