For an adiabatic process, the relationship between temperature ($T$) and volume ($V$) is given by:
$T V^{\gamma-1} = \text{constant}$, or $T_1 V_1^{\gamma-1} = T_2 V_2^{\gamma-1}$.
So, $T_2 = T_1 \left(\frac{V_1}{V_2}\right)^{\gamma-1}$.
Given values:
Initial temperature $T_1 = 37 ^\circ\text{C}$. Convert to Kelvin: $T_1 = 37 + 273.15 \approx 310.15 \text{ K}$. (Using 273 for simpler calculation: $T_1 = 37 + 273 = 310 \text{ K}$).
The gas is compressed to half of its volume, so $V_2 = \frac{1}{2}V_1$.
This means the ratio $\frac{V_1}{V_2} = 2$.
The ratio of specific heat capacities $\gamma = 1.5$.
So, $\gamma-1 = 1.5 - 1 = 0.5$.
Substitute these values into the formula for $T_2$:
$T_2 = T_1 (2)^{\gamma-1} = T_1 (2)^{0.5} = T_1 \sqrt{2}$.
Using $T_1 = 310 \text{ K}$ (from $37+273$ for simpler match with options which are likely based on this):
$T_2 = 310 \text{ K} \times \sqrt{2}$.
Using $\sqrt{2} \approx 1.41421$:
$T_2 \approx 310 \times 1.41421 \approx 438.4051 \text{ K}$.
To convert $T_2$ back to Celsius:
$T_2(^\circ\text{C}) = T_2(\text{K}) - 273 = 438.4051 - 273 = 165.4051 ^\circ\text{C}$.
This value is closest to option (a) 165.3 $^\circ$C.
If we use $\sqrt{2} \approx 1.414$ (a common 3-decimal approximation):
$T_2 \approx 310 \times 1.414 = 438.34 \text{ K}$.
$T_2(^\circ\text{C}) \approx 438.34 - 273 = 165.34 ^\circ\text{C}$.
This matches option (a) 165.3 $^\circ$C very well when rounded to one decimal place.
\[ \boxed{165.3 ^\circ\text{C}} \]