The relation between $\upsilon, c$ and $\lambda$ are, $\upsilon\lambda = c $
For small changes in $\upsilon$ and $\lambda$,
$ \frac{\Delta\upsilon}{\upsilon} = \frac{-\Delta\lambda}{\lambda}$
As $\Delta\lambda = 589.6 - 589.0 = + 0.6\, nm$
Therefore, using doppler shift
$ \frac{\Delta\upsilon}{\upsilon} = \frac{-\Delta\lambda}{\lambda} = \frac{-v_{radial}}{c}$
or $ v_{radial} ? +c\left(\frac{0.6}{589.0}\right) $
$= + 3.06 \times10^{5} m \,s^{-1} $
$= 306 \,km\, s^{-1}$