Consider the reaction at equilibrium:
\[ A_{(g)} \rightleftharpoons B_{(g)} + \frac{1}{2}C_{(g)} \]At equilibrium, let the fraction dissociated be \(\alpha\). Then:
\[ P_A = (1 - \alpha)P, \quad P_B = \frac{\alpha}{2 + \alpha}P, \quad P_C = \frac{\alpha}{2(2 + \alpha)}P \]The expression for \(K_P\) is given by:
\[ K_P = \frac{P_B \cdot P_C^{1/2}}{P_A} = \frac{\alpha^{3/2}P^{1/2}}{(2 + \alpha)^{1/2}(1 - \alpha)} \]Predict expression from α in terms of \(K_{eq}\) and concentration C :
\(A_2 B_3(aq) \leftrightharpoons 2{A_3} (aq)+3B_{{2-}}(aq)\)