Consider the reaction at equilibrium:
\[ A_{(g)} \rightleftharpoons B_{(g)} + \frac{1}{2}C_{(g)} \]At equilibrium, let the fraction dissociated be \(\alpha\). Then:
\[ P_A = (1 - \alpha)P, \quad P_B = \frac{\alpha}{2 + \alpha}P, \quad P_C = \frac{\alpha}{2(2 + \alpha)}P \]The expression for \(K_P\) is given by:
\[ K_P = \frac{P_B \cdot P_C^{1/2}}{P_A} = \frac{\alpha^{3/2}P^{1/2}}{(2 + \alpha)^{1/2}(1 - \alpha)} \]x mg of Mg(OH)$_2$ (molar mass = 58) is required to be dissolved in 1.0 L of water to produce a pH of 10.0 at 298 K. The value of x is ____ mg. (Nearest integer) (Given: Mg(OH)$_2$ is assumed to dissociate completely in H$_2$O)
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is: