1. Initial Condition:
At \(t = 0\):
\[
P_A = 800 \, \text{mm Hg}, \quad P_B = 0, \quad P_C = 0.
\]
2. First-order Kinetics Relation:
For a first-order reaction:
\[
(P_A)_t = (P_A)_0 \left(\frac{1}{2}\right)^{t/t_{1/2}}.
\]
Here:
\((P_A)_0 = 800 \, \text{mm Hg}\),
At \(t = 10 \, \text{min}\), \((P_A)_t = 1600 \, \text{mm Hg}\).
Half-life (\(t_{1/2}\)) of the reaction is \(10 \, \text{min}\).
3. Pressure after 30 minutes:
At \(t = 30 \, \text{min}\):
\[
t = 3 \cdot t_{1/2}.
\]
The pressure of \(P_A\) will be:
\[
(P_A)_t = 800 \cdot \left(\frac{1}{2}\right)^3 = 800 \cdot \frac{1}{8} = 100 \, \text{mm Hg}.
\]
4. Total Pressure Contribution:
The pressure due to products \(2B + C\):
For \(2B\): \(P_B = 2 \cdot (800 - 100) = 1400 \, \text{mm Hg}\),
For \(C\): \(P_C = 800 - 100 = 700 \, \text{mm Hg}\).
Total pressure:
\[
P_{\text{total}} = (P_A) + (P_B) + (P_C).
\]
Substituting values:
\[
P_{\text{total}} = 100 + 1400 + 700 = 2200 \, \text{mm Hg}.
\]
% Final Answer
Final Answer: \( \boxed{2200} \, \text{mm Hg} \)