For a circular aperture, the radius of the first dark ring in the Fraunhofer diffraction pattern, often referred to as the Airy disk radius \( r_1 \), is given by: \[ r_1 = 1.22 \frac{\lambda f}{D}, \] where \( D \) is the diameter of the aperture. Given that the radius \( a = 0.05 \, \text{cm} \), the diameter \( D = 2a = 0.1 \, \text{cm} \). Substituting the given values: \[ r_1 = 1.22 \times \frac{5 \times 10^{-5} \, \text{cm} \times 20 \, \text{cm}}{0.1 \, \text{cm}} = 1.22 \times 10^{-2} \, \text{cm} = 12.20 \times 10^{-3} \, \text{cm}. \] This calculation confirms that the radius of the first dark ring matches option (b).
A slanted object AB is placed on one side of convex lens as shown in the diagram. The image is formed on the opposite side. Angle made by the image with principal axis is: 

