The work done by a force is given by the integral:
\[
w = \int_{x_1}^{x_2} F(x) \, dx
\]
Where \( F(x) = 2 + 3x \). Substituting into the integral:
\[
w = \int_0^4 (2 + 3x) \, dx
\]
Solving this:
\[
w = \int_0^4 2 \, dx + \int_0^4 3x \, dx = [2x]_0^4 + \left[ \frac{3x^2}{2} \right]_0^4
\]
\[
w = (2 \times 4) + \left( \frac{3 \times 4^2}{2} \right) = 8 + \left( \frac{3 \times 16}{2} \right) = 8 + 24 = 32 \, \text{J}
\]
Thus, the work done is 32 J.