Given:
\[ F = ax^2 + bt^{1/2} \]
The dimensions of \( a \) are given by:
\[ [a] = \left[ \frac{F}{x^2} \right] = [MLT^{-2}][L]^{-2} = [ML^{-1}T^{-2}] \]
The dimensions of \( b \) are given by:
\[ [b] = \left[ \frac{F}{t^{1/2}} \right] = [MLT^{-2}][T^{-1/2}] = [MLT^{-5/2}] \]
Now, the dimensions of \( \frac{b^2}{a} \) are:
\[ \left[ \frac{b^2}{a} \right] = \frac{[M^2L^2T^{-5}]}{[ML^{-1}T^{-2}]} = [ML^3T^{-3}] \]
Figure 1 shows the configuration of main scale and Vernier scale before measurement. Fig. 2 shows the configuration corresponding to the measurement of diameter $ D $ of a tube. The measured value of $ D $ is:
Let \[ I(x) = \int \frac{dx}{(x-11)^{\frac{11}{13}} (x+15)^{\frac{15}{13}}} \] If \[ I(37) - I(24) = \frac{1}{4} \left( b^{\frac{1}{13}} - c^{\frac{1}{13}} \right) \] where \( b, c \in \mathbb{N} \), then \[ 3(b + c) \] is equal to:
For the thermal decomposition of \( N_2O_5(g) \) at constant volume, the following table can be formed, for the reaction mentioned below: \[ 2 N_2O_5(g) \rightarrow 2 N_2O_4(g) + O_2(g) \] Given: Rate constant for the reaction is \( 4.606 \times 10^{-2} \text{ s}^{-1} \).