For two skew lines:
\[
\vec{r}_1 = \vec{a}_1 + \lambda \vec{b}_1, \quad \vec{r}_2 = \vec{a}_2 + \mu \vec{b}_2,
\]
the shortest distance \( d \) is given by:
\[
d = \frac{|(\vec{a}_2 - \vec{a}_1) \cdot (\vec{b}_1 \times \vec{b}_2)|}{|\vec{b}_1 \times \vec{b}_2|}.
\]
Here:
\[
\vec{a}_1 = (-1, -1, -1), \quad \vec{b}_1 = (7, -6, 1), \quad \vec{a}_2 = (3, 5, 7), \quad \vec{b}_2 = (1, -2, 1).
\]
Compute \( \vec{b}_1 \times \vec{b}_2 \), \( (\vec{a}_2 - \vec{a}_1) \cdot (\vec{b}_1 \times \vec{b}_2) \), and substitute in the formula.