The sum of the probabilities for a discrete random variable must be equal to 1. Given the probabilities:
X
1
2
3
4
5
6
P(X)
\(\frac{2}{k}\)
\(\frac{4}{k}\)
\(\frac{1}{k}\)
\(\frac{2}{k}\)
\(\frac{3}{k}\)
\(\frac{5}{k}\)
We find: \[\frac{2}{k}+\frac{4}{k}+\frac{1}{k}+\frac{2}{k}+\frac{3}{k}+\frac{5}{k}=1\] Combining all terms: \[\frac{17}{k}=1\] To solve for \(k\), multiply both sides by \(k\): \[17=k\] Therefore, the value of \(k\) is 17.