The correct option is(B): \(R≤\frac{μg}{ω^2}\)
To move together
ω2R ≤ μg
\(R≤\frac{μg}{ω^2}\)
Let \( A = \{-3, -2, -1, 0, 1, 2, 3\} \). A relation \( R \) is defined such that \( xRy \) if \( y = \max(x, 1) \). The number of elements required to make it reflexive is \( l \), the number of elements required to make it symmetric is \( m \), and the number of elements in the relation \( R \) is \( n \). Then the value of \( l + m + n \) is equal to:
For hydrogen-like species, which of the following graphs provides the most appropriate representation of \( E \) vs \( Z \) plot for a constant \( n \)?
[E : Energy of the stationary state, Z : atomic number, n = principal quantum number]
The number of 6-letter words, with or without meaning, that can be formed using the letters of the word MATHS such that any letter that appears in the word must appear at least twice, is $ 4 \_\_\_\_\_$.
The sum of the length of the path traveled by an object from one place to another is called distance. The path may or may not be directly from the initial point to the final point.
Distance is a scalar quantity and has only magnitude, also does not have any direction.
From the particular point, if a car travels to the east for 5 km and takes a turn to travel north for another 8 km, the total distance traveled by car shall be 13 km. The distance can never be zero or negative but should be always more than the displacement of the object. The distance of the object gives complete information about the path traveled by the object.
Read More: Difference between Distance and Displacement
The length of the shortest path from the initial point to the final point is called displacement. It is a vector quantity that consists of magnitude as well as direction.
Let's consider the same example given above, the total displacement of the object will be the length of the line joining the two positions. The displacement of an object is usually shorter or equal to the distance traveled by the object. The displacement of the object does not give the proper information about the path traveled by the object.