Given: - Mass of the disc: \( M \) - Radius of the disc: \( R \) - Speed of the disc: \( v \) - Gravitational acceleration: \( g \)
For a disc rolling without slipping, the total kinetic energy (\( K \)) is the sum of translational kinetic energy and rotational kinetic energy:
\[ K = \text{Translational K.E.} + \text{Rotational K.E.} \] \[ K = \frac{1}{2} M v^2 + \frac{1}{2} I \omega^2 \]
The moment of inertia (\( I \)) of the disc about its center is:
\[ I = \frac{1}{2} M R^2 \]
The angular velocity (\( \omega \)) is related to the linear speed by:
\[ \omega = \frac{v}{R} \]
Substituting these values:
\[ K = \frac{1}{2} M v^2 + \frac{1}{2} \left(\frac{1}{2} M R^2\right) \left(\frac{v}{R}\right)^2 \] \[ K = \frac{1}{2} M v^2 + \frac{1}{4} M v^2 \] \[ K = \frac{3}{4} M v^2 \]
As the disc moves up the incline, its kinetic energy is converted into potential energy (\( U \)) at the maximum height \( h \):
\[ K = U \] \[ \frac{3}{4} M v^2 = M g h \]
Solving for \( h \):
\[ h = \frac{3}{4} \frac{v^2}{g} \]
The maximum height that the disc can go up the incline is \( \frac{3}{4} \frac{v^2}{g} \).
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is: