Given: - Mass of the disc: \( M \) - Radius of the disc: \( R \) - Speed of the disc: \( v \) - Gravitational acceleration: \( g \)
For a disc rolling without slipping, the total kinetic energy (\( K \)) is the sum of translational kinetic energy and rotational kinetic energy:
\[ K = \text{Translational K.E.} + \text{Rotational K.E.} \] \[ K = \frac{1}{2} M v^2 + \frac{1}{2} I \omega^2 \]
The moment of inertia (\( I \)) of the disc about its center is:
\[ I = \frac{1}{2} M R^2 \]
The angular velocity (\( \omega \)) is related to the linear speed by:
\[ \omega = \frac{v}{R} \]
Substituting these values:
\[ K = \frac{1}{2} M v^2 + \frac{1}{2} \left(\frac{1}{2} M R^2\right) \left(\frac{v}{R}\right)^2 \] \[ K = \frac{1}{2} M v^2 + \frac{1}{4} M v^2 \] \[ K = \frac{3}{4} M v^2 \]
As the disc moves up the incline, its kinetic energy is converted into potential energy (\( U \)) at the maximum height \( h \):
\[ K = U \] \[ \frac{3}{4} M v^2 = M g h \]
Solving for \( h \):
\[ h = \frac{3}{4} \frac{v^2}{g} \]
The maximum height that the disc can go up the incline is \( \frac{3}{4} \frac{v^2}{g} \).
Let \[ I(x) = \int \frac{dx}{(x-11)^{\frac{11}{13}} (x+15)^{\frac{15}{13}}} \] If \[ I(37) - I(24) = \frac{1}{4} \left( b^{\frac{1}{13}} - c^{\frac{1}{13}} \right) \] where \( b, c \in \mathbb{N} \), then \[ 3(b + c) \] is equal to:
For the thermal decomposition of \( N_2O_5(g) \) at constant volume, the following table can be formed, for the reaction mentioned below: \[ 2 N_2O_5(g) \rightarrow 2 N_2O_4(g) + O_2(g) \] Given: Rate constant for the reaction is \( 4.606 \times 10^{-2} \text{ s}^{-1} \).