For an isobaric process, the work done is:
\[w = P \Delta V = nR \Delta T.\]
Given:
\[w = 100 \, \text{J}.\]
The heat (\(Q\)) supplied is:
\[Q = \Delta U + w,\]
where the internal energy change (\(\Delta U\)) for a diatomic gas is:
\[\Delta U = \frac{f}{2} nR \Delta T,\]
with \(f = 5\) (degrees of freedom for a diatomic gas).
Substitute:
\[Q = \frac{f}{2} nR \Delta T + nR \Delta T.\]
Simplify:
\[Q = \left(\frac{f}{2} + 1\right) nR \Delta T.\]
Substitute \(\Delta T\) from \(w = nR \Delta T\):
\[Q = \left(\frac{f}{2} + 1\right) \times w.\]
Substitute \(f = 5\) and \(w = 100 \, \text{J}\):
\[Q = \left(\frac{5}{2} + 1\right) \times 100 = \left(\frac{7}{2}\right) \times 100 = 350 \, \text{J}.\]
Thus, the heat given to the gas is:
\[Q = 350 \, \text{J}.\]
Let \( T_r \) be the \( r^{\text{th}} \) term of an A.P. If for some \( m \), \( T_m = \dfrac{1}{25} \), \( T_{25} = \dfrac{1}{20} \), and \( \displaystyle\sum_{r=1}^{25} T_r = 13 \), then \( 5m \displaystyle\sum_{r=m}^{2m} T_r \) is equal to: