The mass defect \( \Delta m \) for a deuteron is the difference between the mass of the deuteron and the sum of the masses of its constituent nucleons (proton and neutron): \[ \Delta m = (m_p + m_n) - m_{\text{deuteron}} \] Substitute the given values: \[ \Delta m = (1.007277 + 1.008665) - 2.01355 = 0.002392 \, \text{u} \] The energy equivalent of the mass defect is: \[ E = \Delta m \cdot 931.5 \, \text{MeV/c}^2 = 0.002392 \times 931.5 = 2.23 \, \text{MeV} \] Thus, the mass defect is \( 0.002392 \, \text{u} \), and the energy equivalence is \( 2.23 \, \text{MeV} \).
Match the LIST-I with LIST-II
LIST-I (Type of decay in Radioactivity) | LIST-II (Reason for stability) | ||
---|---|---|---|
A. | Alpha decay | III. | Nucleus is mostly heavier than Pb (Z=82) |
B. | Beta negative decay | IV. | Nucleus has too many neutrons relative to the number of protons |
C. | Gamma decay | I. | Nucleus has excess energy in an excited state |
D. | Positron Emission | II. | Nucleus has too many protons relative to the number of neutrons |
Choose the correct answer from the options given below:
Given below are two statements: one is labelled as Assertion (A) and the other is labelled as Reason (R).
Assertion (A): The density of the copper ($^{64}Cu$) nucleus is greater than that of the carbon ($^{12}C$) nucleus.
Reason (R): The nucleus of mass number A has a radius proportional to $A^{1/3}$.
In the light of the above statements, choose the most appropriate answer from the options given below:
परसेवा का आनंद — 120 शब्दों में रचनात्मक लेख लिखिए:
Answer the following questions:
[(i)] Explain the structure of a mature embryo sac of a typical flowering plant.
[(ii)] How is triple fusion achieved in these plants?
OR
[(i)] Describe the changes in the ovary and the uterus as induced by the changes in the level of pituitary and ovarian hormones during menstrual cycle in a human female.