We are given the measurements of a cylindrical wire with their uncertainties:
We need to find the maximum percentage error in the measurement of its density ($\rho$).
Key Concepts:
$\left( \frac{\Delta Q}{Q} \times 100\% \right)_{\text{max}} = \left( |a| \frac{\Delta x}{x} + |b| \frac{\Delta y}{y} + |c| \frac{\Delta z}{z} \right) \times 100\%$
$\left( \frac{\Delta \rho}{\rho} \times 100\% \right)_{\text{max}} = \left( (1) \frac{\Delta m}{m} + (2) \frac{\Delta r}{r} + (1) \frac{\Delta L}{L} \right) \times 100\%$
Calculations:
First, calculate the individual percentage errors for mass, radius, and length:
$\frac{0.003 \, \text{g}}{0.3 \, \text{g}} \times 100\% = \frac{3}{300} \times 100\% = \frac{1}{100} \times 100\% = 1\%$
$\frac{0.005 \, \text{mm}}{0.5 \, \text{mm}} \times 100\% = \frac{5}{500} \times 100\% = \frac{1}{100} \times 100\% = 1\%$
$\frac{0.06 \, \text{cm}}{6 \, \text{cm}} \times 100\% = \frac{6}{600} \times 100\% = \frac{1}{100} \times 100\% = 1\%$
Now, substitute these percentage errors into the formula for the percentage error in density:
$\left( \frac{\Delta \rho}{\rho} \times 100\% \right)_{\text{max}} = \left( \frac{\Delta m}{m} \times 100\% \right) + 2 \left( \frac{\Delta r}{r} \times 100\% \right) + \left( \frac{\Delta L}{L} \times 100\% \right)$
$\left( \frac{\Delta \rho}{\rho} \times 100\% \right)_{\text{max}} = (1\%) + 2 \times (1\%) + (1\%)$
$\left( \frac{\Delta \rho}{\rho} \times 100\% \right)_{\text{max}} = 1\% + 2\% + 1\% = 4\%$
The maximum percentage error in the measurement of the density is 4%.
The final answer is ${4}$
The density \( \rho \) of a cylindrical wire is given by the formula: \[ \rho = \frac{\text{Mass}}{\text{Volume}} = \frac{m}{\pi r^2 L} \] Where: - \( m \) is the mass, - \( r \) is the radius, - \( L \) is the length. The percentage error in the density is given by the sum of the percentage errors in mass, radius, and length: \[ \% \, \text{error in} \, \rho = \% \, \text{error in} \, m + 2 \times \% \, \text{error in} \, r + \% \, \text{error in} \, L \] Where: - The factor of 2 comes from the \( r^2 \) term in the formula for volume. Now, let’s calculate the percentage errors: - The mass \( m = 0.3 \, \text{g} \), and the error in mass is \( 0.003 \, \text{g} \). So the percentage error in mass is: \[ \% \, \text{error in} \, m = \frac{0.003}{0.3} \times 100 = 1\% \] - The radius \( r = 0.5 \, \text{mm} \), and the error in radius is \( 0.005 \, \text{mm} \). So the percentage error in radius is: \[ \% \, \text{error in} \, r = \frac{0.005}{0.5} \times 100 = 1\% \] - The length \( L = 6 \, \text{cm} \), and the error in length is \( 0.06 \, \text{cm} \). So the percentage error in length is: \[ \% \, \text{error in} \, L = \frac{0.06}{6} \times 100 = 1\% \] Now, summing up the errors: \[ \% \, \text{error in} \, \rho = 1 + 2 \times 1 + 1 = 4\% \] Thus, the maximum percentage error in the measurement of the density is \( 4\% \).