We are given the measurements of a cylindrical wire with their uncertainties:
We need to find the maximum percentage error in the measurement of its density ($\rho$).
Key Concepts:
$\left( \frac{\Delta Q}{Q} \times 100\% \right)_{\text{max}} = \left( |a| \frac{\Delta x}{x} + |b| \frac{\Delta y}{y} + |c| \frac{\Delta z}{z} \right) \times 100\%$
$\left( \frac{\Delta \rho}{\rho} \times 100\% \right)_{\text{max}} = \left( (1) \frac{\Delta m}{m} + (2) \frac{\Delta r}{r} + (1) \frac{\Delta L}{L} \right) \times 100\%$
Calculations:
First, calculate the individual percentage errors for mass, radius, and length:
$\frac{0.003 \, \text{g}}{0.3 \, \text{g}} \times 100\% = \frac{3}{300} \times 100\% = \frac{1}{100} \times 100\% = 1\%$
$\frac{0.005 \, \text{mm}}{0.5 \, \text{mm}} \times 100\% = \frac{5}{500} \times 100\% = \frac{1}{100} \times 100\% = 1\%$
$\frac{0.06 \, \text{cm}}{6 \, \text{cm}} \times 100\% = \frac{6}{600} \times 100\% = \frac{1}{100} \times 100\% = 1\%$
Now, substitute these percentage errors into the formula for the percentage error in density:
$\left( \frac{\Delta \rho}{\rho} \times 100\% \right)_{\text{max}} = \left( \frac{\Delta m}{m} \times 100\% \right) + 2 \left( \frac{\Delta r}{r} \times 100\% \right) + \left( \frac{\Delta L}{L} \times 100\% \right)$
$\left( \frac{\Delta \rho}{\rho} \times 100\% \right)_{\text{max}} = (1\%) + 2 \times (1\%) + (1\%)$
$\left( \frac{\Delta \rho}{\rho} \times 100\% \right)_{\text{max}} = 1\% + 2\% + 1\% = 4\%$
The maximum percentage error in the measurement of the density is 4%.
The final answer is ${4}$
If \( T = 2\pi \sqrt{\frac{L}{g}} \), \( g \) is a constant and the relative error in \( T \) is \( k \) times to the percentage error in \( L \), then \( \frac{1}{k} = \) ?