We are given the following data:
- Angle of projection, \( \theta = 30^\circ \)
- Initial height, \( h_0 = 2.5 \, \text{m} \)
- Horizontal distance, \( R = 50 \, \text{m} \)
- \( \tan 30^\circ = 0.577 \)
- Gravitational acceleration, \( g = 9.8 \, \text{m/s}^2 \)
1. Find the time of flight \( t \):
The horizontal velocity component \( v_x = v \cos(\theta) \), where \( v \) is the initial velocity. The horizontal distance is related to the time of flight by:
\[
R = v_x \times t
\]
\[
50 = v \cos(30^\circ) \times t
\]
\[
50 = v \times 0.866 \times t
\]
Thus,
\[
t = \frac{50}{v \times 0.866}
\]
2. Vertical motion:
For vertical motion, we use the kinematic equation for maximum height \( h_{\text{max}} \):
\[
h_{\text{max}} = h_0 + \frac{v_y^2}{2g}
\]
where \( v_y = v \sin(\theta) \). Substituting \( v_y = v \sin(30^\circ) = 0.5v \), the maximum height equation becomes:
\[
h_{\text{max}} = 2.5 + \frac{(0.5v)^2}{2g} = 2.5 + \frac{0.25v^2}{2 \times 9.8}
\]
3. Use the range equation to find \( v \):
The range equation for projectile motion is:
\[
R = \frac{v^2 \sin(2\theta)}{g}
\]
Substituting \( R = 50 \), \( \theta = 30^\circ \), and \( g = 9.8 \, \text{m/s}^2 \):
\[
50 = \frac{v^2 \sin(60^\circ)}{9.8}
\]
\[
50 = \frac{v^2 \times 0.866}{9.8}
\]
\[
v^2 = \frac{50 \times 9.8}{0.866} = 566.65
\]
\[
v = 23.8 \, \text{m/s}
\]
4. Now, calculate the maximum height attained:
Substitute \( v = 23.8 \, \text{m/s} \) into the equation for maximum height:
\[
h_{\text{max}} = 2.5 + \frac{0.25 \times (23.8)^2}{2 \times 9.8}
\]
\[
h_{\text{max}} = 2.5 + \frac{0.25 \times 566.44}{19.6}
\]
\[
h_{\text{max}} = 2.5 + \frac{141.61}{19.6} = 2.5 + 7.2 = 9.7 \, \text{m}
\]
Thus, the maximum height attained by the ball is \( 9.7 \, \text{m} \).