At STP \(x\) g of a metal hydrogen carbonate (MHCO$_3$) (molar mass \(84 \, {g/mol}\)) on heating gives CO$_2$, which can completely react with \(0.02 \, {moles}\) of MOH (molar mass \(40 \, {g/mol}\)) to give MHCO$_3$. The value of \(x\) is:
Which one of the following graphs accurately represents the plot of partial pressure of CS₂ vs its mole fraction in a mixture of acetone and CS₂ at constant temperature?

In the given figure, the blocks $A$, $B$ and $C$ weigh $4\,\text{kg}$, $6\,\text{kg}$ and $8\,\text{kg}$ respectively. The coefficient of sliding friction between any two surfaces is $0.5$. The force $\vec{F}$ required to slide the block $C$ with constant speed is ___ N.
(Given: $g = 10\,\text{m s}^{-2}$) 
It is described as the distribution rather than a specific number due to the occurrence of polymerization in such a way as to produce different chain lengths. Polymer MW is derived as follows:
\[M_{W} = \sum^{N}_{i=1} w_{i}MW_{i}.\]Where,
wi = the weight fraction of polymer chains having a molecular weight of MWi.
The MW is typically measured by light dispersing experiments. The degree of dispersing arises from the molecule size and, thus, molecular weight dispensation can be mathematically set on the total scattering created by the sample.