\(i(t) = \frac{V}{R} \left(1 - e^{-\frac{Rt}{L}}\right)\) \(⋯(1)\)
\(\frac{L}{R} = \frac{1}{100s}\)
\(⇒\) \(\frac{L}{R} = 10 \ \text{ms} \quad \dots (2)\)
\(\frac{V}{2R} = \frac{V}{R} \left(1 - e^{-\frac{Rt}{L}}\right)\)
\(⇒\) \(e^{-\frac{Rt}{L}} = \frac{1}{2}\)
\(⇒\)\(t = \frac{L}{R} \ln 2 = 6.93 \ \text{ms}\)
\(U = \frac{1}{2}Li^2\)
\(=\frac{1}{2} \left[1 - e^{-\frac{15}{10}}\right]^2 \left(\frac{6}{100}\right)^2\)
\(=\frac{1}{2}[1 - 0.25]^2 \times 36 \times 10^{-4}\)
\(= 1 \)mJ
So, the correct option is (C): t = 7 ms; U = 1 mJ
For the thermal decomposition of \( N_2O_5(g) \) at constant volume, the following table can be formed, for the reaction mentioned below: \[ 2 N_2O_5(g) \rightarrow 2 N_2O_4(g) + O_2(g) \] Given: Rate constant for the reaction is \( 4.606 \times 10^{-2} \text{ s}^{-1} \).
Electromagnetic Induction is a current produced by the voltage production due to a changing magnetic field. This happens in one of the two conditions:-
The electromagnetic induction is mathematically represented as:-
e=N × d∅.dt
Where