\(i(t) = \frac{V}{R} \left(1 - e^{-\frac{Rt}{L}}\right)\) \(⋯(1)\)
\(\frac{L}{R} = \frac{1}{100s}\)
\(⇒\) \(\frac{L}{R} = 10 \ \text{ms} \quad \dots (2)\)
\(\frac{V}{2R} = \frac{V}{R} \left(1 - e^{-\frac{Rt}{L}}\right)\)
\(⇒\) \(e^{-\frac{Rt}{L}} = \frac{1}{2}\)
\(⇒\)\(t = \frac{L}{R} \ln 2 = 6.93 \ \text{ms}\)
\(U = \frac{1}{2}Li^2\)
\(=\frac{1}{2} \left[1 - e^{-\frac{15}{10}}\right]^2 \left(\frac{6}{100}\right)^2\)
\(=\frac{1}{2}[1 - 0.25]^2 \times 36 \times 10^{-4}\)
\(= 1 \)mJ
So, the correct option is (C): t = 7 ms; U = 1 mJ
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is:
Electromagnetic Induction is a current produced by the voltage production due to a changing magnetic field. This happens in one of the two conditions:-
The electromagnetic induction is mathematically represented as:-
e=N × d∅.dt
Where