\(i(t) = \frac{V}{R} \left(1 - e^{-\frac{Rt}{L}}\right)\) \(⋯(1)\)
\(\frac{L}{R} = \frac{1}{100s}\)
\(⇒\) \(\frac{L}{R} = 10 \ \text{ms} \quad \dots (2)\)
\(\frac{V}{2R} = \frac{V}{R} \left(1 - e^{-\frac{Rt}{L}}\right)\)
\(⇒\) \(e^{-\frac{Rt}{L}} = \frac{1}{2}\)
\(⇒\)\(t = \frac{L}{R} \ln 2 = 6.93 \ \text{ms}\)
\(U = \frac{1}{2}Li^2\)
\(=\frac{1}{2} \left[1 - e^{-\frac{15}{10}}\right]^2 \left(\frac{6}{100}\right)^2\)
\(=\frac{1}{2}[1 - 0.25]^2 \times 36 \times 10^{-4}\)
\(= 1 \)mJ
So, the correct option is (C): t = 7 ms; U = 1 mJ
Let $ f: \mathbb{R} \to \mathbb{R} $ be a twice differentiable function such that $$ f''(x)\sin\left(\frac{x}{2}\right) + f'(2x - 2y) = (\cos x)\sin(y + 2x) + f(2x - 2y) $$ for all $ x, y \in \mathbb{R} $. If $ f(0) = 1 $, then the value of $ 24f^{(4)}\left(\frac{5\pi}{3}\right) $ is:
Electromagnetic Induction is a current produced by the voltage production due to a changing magnetic field. This happens in one of the two conditions:-
The electromagnetic induction is mathematically represented as:-
e=N × d∅.dt
Where