Given: - Number of turns: \( N = 200 \) - Area of the coil: \( A = 0.20 \, \text{m}^2 \) - Magnetic field: \( B = 0.01 \, \text{T} \) - Frequency of rotation: \( f = 0.5 \, \text{Hz} \)
The angular velocity \( \omega \) is given by:
\[ \omega = 2\pi f \]
Substituting the given frequency:
\[ \omega = 2\pi \times 0.5 = \pi \, \text{rad/s} \]
The maximum induced EMF (voltage) in the rotating coil is given by Faraday's law of electromagnetic induction:
\[ \text{EMF}_{\text{max}} = NAB\omega \]
Substituting the given values:
\[ \text{EMF}_{\text{max}} = 200 \times 0.20 \, \text{m}^2 \times 0.01 \, \text{T} \times \pi \, \text{rad/s} \] \[ \text{EMF}_{\text{max}} = 200 \times 0.002 \times \pi \] \[ \text{EMF}_{\text{max}} = 0.4\pi \, \text{volt} \]
The given expression for the maximum voltage is:
\[ \text{EMF}_{\text{max}} = \frac{2\pi}{\beta} \, \text{volt} \]
Equating the two expressions:
\[ 0.4\pi = \frac{2\pi}{\beta} \]
Cancelling \( \pi \) from both sides:
\[ 0.4 = \frac{2}{\beta} \]
Rearranging to find \( \beta \):
\[ \beta = \frac{2}{0.4} \] \[ \beta = 5 \]
The value of \( \beta \) is 5.
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is: