The work done \( W = \Delta U = U_f - U_i \):
\[W = -(\mu B)_f - (-\mu B)_i\]
Initially, the magnetic moment \( \mu \) is perpendicular to the magnetic field, so:
\[W = 0 + (\mu B)\]
Substitute the values:
\[\mu = (100 \times 5 \times 10^{-3} \times 1 \times 10^{-3}) \, \text{A} \cdot \text{m}^2\]
\[W = (1 \times 10^{-4}) \times 0.2 \, \text{J} = 1 \times 10^{-5} \, \text{J} = 100 \, \mu \text{J}\]
Let \[ I(x) = \int \frac{dx}{(x-11)^{\frac{11}{13}} (x+15)^{\frac{15}{13}}} \] If \[ I(37) - I(24) = \frac{1}{4} \left( b^{\frac{1}{13}} - c^{\frac{1}{13}} \right) \] where \( b, c \in \mathbb{N} \), then \[ 3(b + c) \] is equal to:
For the thermal decomposition of \( N_2O_5(g) \) at constant volume, the following table can be formed, for the reaction mentioned below: \[ 2 N_2O_5(g) \rightarrow 2 N_2O_4(g) + O_2(g) \] Given: Rate constant for the reaction is \( 4.606 \times 10^{-2} \text{ s}^{-1} \).