The work done \( W = \Delta U = U_f - U_i \):
\[W = -(\mu B)_f - (-\mu B)_i\]
Initially, the magnetic moment \( \mu \) is perpendicular to the magnetic field, so:
\[W = 0 + (\mu B)\]
Substitute the values:
\[\mu = (100 \times 5 \times 10^{-3} \times 1 \times 10^{-3}) \, \text{A} \cdot \text{m}^2\]
\[W = (1 \times 10^{-4}) \times 0.2 \, \text{J} = 1 \times 10^{-5} \, \text{J} = 100 \, \mu \text{J}\]
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is: