The ideal gas law relates pressure and the number of moles:
\[ P \propto n \quad \text{or} \quad P \propto \frac{\text{mass}}{\text{molar mass}}. \]
Let the molar mass of gas X be \( M_X \). Then:
\[ \frac{\text{mass of X}}{M_X} \propto P_X \Rightarrow M_X \propto \frac{\text{mass of X}}{P_X} = \frac{10}{2} = 5. \]
Let the molar mass of gas Y be \( M_Y \). Then:
\[ M_Y \propto \frac{\text{mass of Y}}{P_Y} = \frac{80}{4} = 20. \]
The root mean square (RMS) velocity of a gas is given by:
\[ v_{\text{rms}} = \sqrt{\frac{3RT}{M}}, \]
where \( M \) is the molar mass. The ratio of \( v_{\text{rms}} \) for X and Y is:
\[ \frac{v_{\text{rms, X}}}{v_{\text{rms, Y}}} = \sqrt{\frac{M_Y}{M_X}}. \]
Substituting \( M_X = 5 \) and \( M_Y = 20 \):
\[ \frac{v_{\text{rms, X}}}{v_{\text{rms, Y}}} = \sqrt{\frac{20}{5}} = \sqrt{4} = 2. \]
Thus, the ratio is:
\[ v_{\text{rms, X}} : v_{\text{rms, Y}} = 2 : 1. \]