\textbf{Step 1: Recall the Ideal Gas Law}
The ideal gas law is given by:
$$
PV = nRT
$$
where:
$ P $ is the pressure,
$ V $ is the volume,
$ n $ is the number of moles,
$ R $ is the universal gas constant,
$ T $ is the temperature.
Since the volumes of the two gases are equal at the same pressure, we can use the relationship:
$$
\frac{n_1}{T_1} = \frac{n_2}{T_2}
$$
where:
$ n_1 $ and $ T_1 $ are the number of moles and temperature of gas "A",
$ n_2 $ and $ T_2 $ are the number of moles and temperature of $
\text{H}_2 $.
Step 2: Express Moles in Terms of Mass and Molar Mass
For gas "A":
Mass of gas "A": $ m_A = 5.6 \, \text{g} $
Molar mass of gas "A": $ M_A $ (to be determined)
Number of moles of gas "A":
$$
n_A = \frac{m_A}{M_A} = \frac{5.6}{M_A}
$$
For $ \text{H}_2 $:
Mass of $ \text{H}_2 $: $ m_{\text{H}_2} = 1 \, \text{g} $
Molar mass of $ \text{H}_2 $: $ M_{\text{H}_2} = 2 \, \text{g mol}^{-1} $
Number of moles of $ \text{H}_2 $:
$$
n_{\text{H}_2} = \frac{m_{\text{H}_2}}{M_{\text{H}_2}} = \frac{1}{2}
$$
Step 3: Apply the Volume Relationship
Using the relationship $ \frac{n_1}{T_1} = \frac{n_2}{T_2} $:
$$
\frac{n_A}{T_A} = \frac{n_{\text{H}_2}}{T_{\text{H}_2}}
$$
Substitute the known values:
$$
\frac{\frac{5.6}{M_A}}{610} = \frac{\frac{1}{2}}{243.9}
$$
Simplify:
$$
\frac{5.6}{M_A \cdot 610} = \frac{1}{2 \cdot 243.9}
$$
Cross-multiply:
$$
5.6 \cdot 2 \cdot 243.9 = M_A \cdot 610
$$
Solve for $ M_A $:
$$
M_A = \frac{5.6 \cdot 2 \cdot 243.9}{610}
$$
$$
M_A = \frac{2753.76}{610} \approx 28 \, \text{g mol}^{-1}
$$
Step 4: Analyze the Options
Option (1): $ 56 $
Incorrect — does not match the calculated value.
Option (2): $ 28 $
Correct — matches the calculated value.
Option (3): $ 44 $
Incorrect — does not match the calculated value.
Option (4): $ 60 $
Incorrect — does not match the calculated value.