The time constant \( \tau = RC \) represents the time it takes for the capacitor to charge up to about 63% of its full charge. For the given values of \( R = 20 \, \text{k}\Omega \) and \( C = 500 \, \mu\text{F} \): \[ \tau = RC = (20 \times 10^3) \times (500 \times 10^{-6}) = 10 \, \text{seconds} \] Now, the expression for the charge on the capacitor at any time \( t \) is: \[ q(t) = Q \left( 1 - e^{-\frac{t}{RC}} \right) \] where \( Q = VC \) is the maximum charge on the capacitor: \[ Q = 10 \, \text{V} \times 500 \times 10^{-6} \, \text{F} = 5 \times 10^{-3} \, \text{C} \] Thus, the charge at any time \( t \) is: \[ q(t) = 5 \times 10^{-3} \left( 1 - e^{-\frac{t}{10}} \right) \, \text{C} \] To find the charging current \( I(t) \), we differentiate \( q(t) \): \[ I(t) = \frac{dq}{dt} = \frac{5 \times 10^{-3}}{10} e^{-\frac{t}{10}} = 5 \times 10^{-4} e^{-\frac{t}{10}} \, \text{A} \] Thus, the charging current at any time \( t \) is \( 5 \times 10^{-4} e^{-\frac{t}{10}} \, \text{A} \).