The radius \( r \) of the circle inscribed in an equilateral triangle is given by:
\[ r = \frac{\Delta}{s} = \frac{\sqrt{3}a^2}{4a} = \frac{a}{2\sqrt{3}} = \frac{12}{2\sqrt{3}} = 2\sqrt{3}. \]
The side of the square inscribed in this circle is:
\[ \lambda = r\sqrt{2} = 2\sqrt{3} \cdot \sqrt{2} = 2\sqrt{6}. \]
Area of the square:
\[ m = \lambda^2 = (2\sqrt{6})^2 = 24. \]
Perimeter of the square:
\[ n = 4\lambda = 4(2\sqrt{6}) = 8\sqrt{6}. \]
\[ m + n^2 = 24 + (8\sqrt{6})^2 = 24 + 384 = 408. \]
Consider the following sequence of reactions : 
Molar mass of the product formed (A) is ______ g mol\(^{-1}\).
Two capacitors \( C_1 \) and \( C_2 \) are connected in parallel to a battery. Charge-time graph is shown below for the two capacitors. The energy stored with them are \( U_1 \) and \( U_2 \), respectively. Which of the given statements is true? 
Given below are two statements: one is labelled as Assertion (A) and the other is labelled as Reason (R).
Assertion (A): Time period of a simple pendulum is longer at the top of a mountain than that at the base of the mountain.
Reason (R): Time period of a simple pendulum decreases with increasing value of acceleration due to gravity and vice-versa. In the light of the above statements, choose the most appropriate answer from the options given below: