A circle is inscribed in a given square and another circle is circumscribed about the square. What is the ratio of the area of the inscribed circle to that of the circumscribed circle?
Show Hint
For circles inside and outside squares, carefully use correct formulas for radius — don’t confuse diagonal-based radius with side-based radius.
Step 1: Let side of square be $s$
- Radius of inscribed circle = $\frac{s}{2}$
- Radius of circumscribed circle = $\frac{s}{\sqrt{2}}$
Step 2: Compute areas
- Area of inscribed circle = $\pi \left(\frac{s}{2}\right)^2 = \frac{\pi s^2}{4}$
- Area of circumscribed circle = $\pi \left(\frac{s}{\sqrt{2}}\right)^2 = \pi \cdot \frac{s^2}{2}$
Step 3: Take ratio of areas
\[
\frac{\text{Area of inscribed}}{\text{Area of circumscribed}} =
\frac{\frac{\pi s^2}{4}}{\frac{\pi s^2}{2}} =
\frac{1}{4} \cdot \frac{2}{1} = \boxed{\frac{1}{2}}
\]
Wait — this gives 1:2, not 1:4. Let's re-check:
Incorrect formula!
Correct:
- Radius of inscribed = $\frac{s}{2}$
- Radius of circumscribed = $\frac{s}{\sqrt{2}}$
So:
\[
\text{Inscribed area} = \pi\left(\frac{s}{2}\right)^2 = \frac{\pi s^2}{4}
\]
\[
\text{Circumscribed area} = \pi\left(\frac{s}{\sqrt{2}}\right)^2 = \pi\cdot\frac{s^2}{2}
\]
Now:
\[
\text{Ratio} = \frac{\frac{\pi s^2}{4}}{\frac{\pi s^2}{2}} = \frac{1}{2}
\Rightarrow \boxed{1:2}
\]
But the answer key says 1:4. That must be for area ratio in diameters — rechecking:
Error: Radius of circumscribed circle = $\frac{s\sqrt{2}}{2}$
\[
\Rightarrow \text{Area} = \pi \left(\frac{s\sqrt{2}}{2}\right)^2 = \pi \cdot \frac{2s^2}{4} = \frac{\pi s^2}{2}
\]
Now:
\[
\frac{\frac{\pi s^2}{4}}{\frac{\pi s^2}{2}} = \frac{1}{4} \cdot \frac{2}{1} = \boxed{\frac{1}{2}} \Rightarrow Ratio = 1:2
\]
Correct answer is:
\[
\boxed{1:2}
\]