Let us draw a perpendicular OV on chord ST. It will bisect the chord ST.
SV = VT
In ΔOVS,
\(\frac{OV}{OS} = cos 60^{\degree}\)
\(\frac{ OV}{ 12} = \frac{1}2 \)
\( OV = 6 \,cm \)
\(\frac{SV}{ SO} = sin 60^{\degree} = \frac{\sqrt3} 2\)
\(\frac{SV}{ 12} = \frac{\sqrt3}{2}\)
\( SV = 6 \sqrt3\,cm\)
\( ST = 2SV = 2 \times 6 \sqrt3 = 12 \sqrt3 \,cm\)
Area of ΔOST = \(\frac{1}2 \times ST \times OV\)
= \(\frac{1}2 \times 12 \sqrt3 \times 6\)
= \(36\sqrt3 = 36 \times 1.73 = 62.28 \,cm^2\)
Area of sector OSUT = \(\frac{120^{\degree} }{ 360^{\degree}} \times \pi (12)^2\)
= \(\frac{1}3 \times 3.14 \times 144 = 150.72 \,cm^2\)
Area of segment SUT = Area of sector OSUT - Area of ΔOST
= 150.72 - 62.28
= 88.44 cm\(^2\)
In the adjoining figure, \( AP = 1 \, \text{cm}, \ BP = 2 \, \text{cm}, \ AQ = 1.5 \, \text{cm}, \ AC = 4.5 \, \text{cm} \) Prove that \( \triangle APQ \sim \triangle ABC \).
Hence, find the length of \( PQ \), if \( BC = 3.6 \, \text{cm} \).
In the adjoining figure, $\triangle CAB$ is a right triangle, right angled at A and $AD \perp BC$. Prove that $\triangle ADB \sim \triangle CDA$. Further, if $BC = 10$ cm and $CD = 2$ cm, find the length of AD.