Let us draw a perpendicular OV on chord ST. It will bisect the chord ST.
SV = VT
In ΔOVS,
\(\frac{OV}{OS} = cos 60^{\degree}\)
\(\frac{ OV}{ 12} = \frac{1}2 \)
\( OV = 6 \,cm \)
\(\frac{SV}{ SO} = sin 60^{\degree} = \frac{\sqrt3} 2\)
\(\frac{SV}{ 12} = \frac{\sqrt3}{2}\)
\( SV = 6 \sqrt3\,cm\)
\( ST = 2SV = 2 \times 6 \sqrt3 = 12 \sqrt3 \,cm\)
Area of ΔOST = \(\frac{1}2 \times ST \times OV\)
= \(\frac{1}2 \times 12 \sqrt3 \times 6\)
= \(36\sqrt3 = 36 \times 1.73 = 62.28 \,cm^2\)
Area of sector OSUT = \(\frac{120^{\degree} }{ 360^{\degree}} \times \pi (12)^2\)
= \(\frac{1}3 \times 3.14 \times 144 = 150.72 \,cm^2\)
Area of segment SUT = Area of sector OSUT - Area of ΔOST
= 150.72 - 62.28
= 88.44 cm\(^2\)