Step 1: Identify the total number of balls in each box: - Box \( P \): 6 balls (1 white, 3 red, 2 black) - Box \( Q \): 9 balls (2 white, 3 red, 4 black)
Step 2: Calculate the probabilities for each case where the colors differ: - Case 1: White from \( P \) and Non-white from \( Q \) \[ P = \frac{1}{6} \times \frac{7}{9} = \frac{7}{54} \] - Case 2: Red from \( P \) and Non-red from \( Q \) \[ P = \frac{3}{6} \times \frac{6}{9} = \frac{18}{54} \] - Case 3: Black from \( P \) and Non-black from \( Q \) \[ P = \frac{2}{6} \times \frac{5}{9} = \frac{10}{54} \] Step 3: Sum the probabilities: \[ P({different colors}) = \frac{7}{54} + \frac{18}{54} + \frac{10}{54} = \frac{35}{54} \]