The work done is given by the equation:
\[
W = \vec{F} \cdot \vec{d}
\]
where \( \vec{F} \) is the force and \( \vec{d} \) is the displacement.
The force is calculated from Newton’s second law:
\[
\vec{F} = m \cdot \vec{a}
\]
where \( m = 2 \, \text{kg} \) and \( \vec{a} = 2\hat{i} + 3\hat{j} - \hat{k} \, \text{ms}^{-2} \). Thus,
\[
\vec{F} = 2 \times (2\hat{i} + 3\hat{j} - \hat{k}) = 4\hat{i} + 6\hat{j} - 2\hat{k} \, \text{N}
\]
The displacement vector is given as:
\[
\vec{d} = 3\hat{i} - \hat{j} + 2\hat{k} \, \text{m}
\]
Now, compute the dot product \( \vec{F} \cdot \vec{d} \):
\[
\vec{F} \cdot \vec{d} = (4\hat{i} + 6\hat{j} - 2\hat{k}) \cdot (3\hat{i} - \hat{j} + 2\hat{k})
\]
\[
= (4 \times 3) + (6 \times -1) + (-2 \times 2)
\]
\[
= 12 - 6 - 4 = 2 \, \text{J}
\]
Thus, the work done is \( 2 \, \text{J} \).