A body of mass $100 \;g$ is moving in a circular path of radius $2\; m$ on a vertical plane as shown in the figure. The velocity of the body at point A is $10 m/s.$ The ratio of its kinetic energies at point B and C is: (Take acceleration due to gravity as $10 m/s^2$)
A sportsman runs around a circular track of radius $ r $ such that he traverses the path ABAB. The distance travelled and displacement, respectively, are:
A bob of mass \(m\) is suspended at a point \(O\) by a light string of length \(l\) and left to perform vertical motion (circular) as shown in the figure. Initially, by applying horizontal velocity \(v_0\) at the point ‘A’, the string becomes slack when the bob reaches at the point ‘D’. The ratio of the kinetic energy of the bob at the points B and C is: