Step 1: Analyze the forces on a banked road without friction.
On a frictionless banked road, the horizontal component of the normal force provides the necessary centripetal force:
\[
N \sin \theta = \frac{mv^2}{r}
\]
Step 2: Use vertical equilibrium to eliminate \( N \):
\[
N \cos \theta = mg \quad \Rightarrow \quad N = \frac{mg}{\cos \theta}
\]
Step 3: Substitute into the centripetal force equation:
\[
\frac{mg}{\cos \theta} \cdot \sin \theta = \frac{mv^2}{r}
\Rightarrow mg \tan \theta = \frac{mv^2}{r}
\]
Step 4: Solve for \( v \):
\[
v^2 = r g \tan \theta \quad \Rightarrow \quad v = \sqrt{r g \tan \theta}
\]