The power developed by a force is \[ P = \vec{F} \cdot \vec{v}. \] Ensure both \(\vec{F}\) and \(\vec{v}\) are evaluated at the same instant of time.
The force acting on the body is:
\[ \vec{F} = t \, \hat{i} + 3t^2 \, \hat{j} \]
The acceleration is given by Newton’s second law:
\[ \vec{a} = \frac{\vec{F}}{m} = \vec{F} \quad (\text{since } m = 1 \, \text{kg}) \]
The velocity is obtained by integrating acceleration:
\[ \vec{v} = \int \vec{a} \, dt = \int (t \, \hat{i} + 3t^2 \, \hat{j}) \, dt = \frac{t^2}{2} \, \hat{i} + t^3 \, \hat{j} \]
At \(t = 2 \, \text{s}\):
\[ \vec{v} = \frac{2^2}{2} \, \hat{i} + 2^3 \, \hat{j} = 2 \, \hat{i} + 8 \, \hat{j} \]
The power is given by:
\[ P = \vec{F} \cdot \vec{v} \]
Substitute \(\vec{F} = 2 \, \hat{i} + 3 \cdot 2^2 \, \hat{j} = 2 \, \hat{i} + 12 \, \hat{j}\) and \(\vec{v} = 2 \, \hat{i} + 8 \, \hat{j}\):
\[ P = (2 \, \hat{i} + 12 \, \hat{j}) \cdot (2 \, \hat{i} + 8 \, \hat{j}) = (2 \cdot 2) + (12 \cdot 8) = 4 + 96 = 100 \, \text{W} \]
Thus, the power at \(t = 2 \, \text{s}\) is \(100 \, \text{W}\).
The correct answer is 100. F=ti^+3t2j^ dtmdv=ti^+3t2j^ m=1kg,0∫vdv=0∫ttdti^+0∫t3t2dtj^ v=2t2i^+t3j^ Power =F⋅V=2t3+3t5 At t=2, power =28+3×32 =100
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is:
Read More: Work and Energy