The power developed by a force is \[ P = \vec{F} \cdot \vec{v}. \] Ensure both \(\vec{F}\) and \(\vec{v}\) are evaluated at the same instant of time.
The force acting on the body is:
\[ \vec{F} = t \, \hat{i} + 3t^2 \, \hat{j} \]
The acceleration is given by Newton’s second law:
\[ \vec{a} = \frac{\vec{F}}{m} = \vec{F} \quad (\text{since } m = 1 \, \text{kg}) \]
The velocity is obtained by integrating acceleration:
\[ \vec{v} = \int \vec{a} \, dt = \int (t \, \hat{i} + 3t^2 \, \hat{j}) \, dt = \frac{t^2}{2} \, \hat{i} + t^3 \, \hat{j} \]
At \(t = 2 \, \text{s}\):
\[ \vec{v} = \frac{2^2}{2} \, \hat{i} + 2^3 \, \hat{j} = 2 \, \hat{i} + 8 \, \hat{j} \]
The power is given by:
\[ P = \vec{F} \cdot \vec{v} \]
Substitute \(\vec{F} = 2 \, \hat{i} + 3 \cdot 2^2 \, \hat{j} = 2 \, \hat{i} + 12 \, \hat{j}\) and \(\vec{v} = 2 \, \hat{i} + 8 \, \hat{j}\):
\[ P = (2 \, \hat{i} + 12 \, \hat{j}) \cdot (2 \, \hat{i} + 8 \, \hat{j}) = (2 \cdot 2) + (12 \cdot 8) = 4 + 96 = 100 \, \text{W} \]
Thus, the power at \(t = 2 \, \text{s}\) is \(100 \, \text{W}\).
The correct answer is 100. F=ti^+3t2j^ dtmdv=ti^+3t2j^ m=1kg,0∫vdv=0∫ttdti^+0∫t3t2dtj^ v=2t2i^+t3j^ Power =F⋅V=2t3+3t5 At t=2, power =28+3×32 =100
In the following circuit, the reading of the ammeter will be: (Take Zener breakdown voltage = 4 V)
If $10 \sin^4 \theta + 15 \cos^4 \theta = 6$, then the value of $\frac{27 \csc^6 \theta + 8 \sec^6 \theta}{16 \sec^8 \theta}$ is:
If the area of the region $\{ (x, y) : |x - 5| \leq y \leq 4\sqrt{x} \}$ is $A$, then $3A$ is equal to
Let $A = \begin{bmatrix} \cos \theta & 0 & -\sin \theta \\ 0 & 1 & 0 \\ \sin \theta & 0 & \cos \theta \end{bmatrix}$. If for some $\theta \in (0, \pi)$, $A^2 = A^T$, then the sum of the diagonal elements of the matrix $(A + I)^3 + (A - I)^3 - 6A$ is equal to
Read More: Work and Energy