The displacement in the nth interval, Sn, is given by:
Sn = \(\frac{1}{2}a(2n - 1) = \frac{19a}{2}\) for n = 10.
Similarly, the displacement in the (n − 1)th interval, Sn-1, is:
Sn-1 = \(\frac{1}{2}a(2n - 3) = \frac{17a}{2}\)
The ratio of Sn-1 to Sn becomes:
\[ \frac{S_{n-1}}{S_{n}} = \frac{\frac{17a}{2}}{\frac{19a}{2}} = \frac{17}{19} \]
Now equating this ratio to \(1 - \frac{2}{x}\):
\[ \frac{17}{19} = 1 - \frac{2}{x}\]
Simplify to find x:
\[ \frac{2}{x} = 1 - \frac{17}{19} = \frac{2}{19}\]
\[ x = 19 \]
An object has moved through a distance can it have zero displacement if yes support your answer with an example.
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is: