The displacement in the nth interval, Sn, is given by:
Sn = \(\frac{1}{2}a(2n - 1) = \frac{19a}{2}\) for n = 10.
Similarly, the displacement in the (n − 1)th interval, Sn-1, is:
Sn-1 = \(\frac{1}{2}a(2n - 3) = \frac{17a}{2}\)
The ratio of Sn-1 to Sn becomes:
\[ \frac{S_{n-1}}{S_{n}} = \frac{\frac{17a}{2}}{\frac{19a}{2}} = \frac{17}{19} \]
Now equating this ratio to \(1 - \frac{2}{x}\):
\[ \frac{17}{19} = 1 - \frac{2}{x}\]
Simplify to find x:
\[ \frac{2}{x} = 1 - \frac{17}{19} = \frac{2}{19}\]
\[ x = 19 \]
Let $ f: \mathbb{R} \to \mathbb{R} $ be a twice differentiable function such that $$ f''(x)\sin\left(\frac{x}{2}\right) + f'(2x - 2y) = (\cos x)\sin(y + 2x) + f(2x - 2y) $$ for all $ x, y \in \mathbb{R} $. If $ f(0) = 1 $, then the value of $ 24f^{(4)}\left(\frac{5\pi}{3}\right) $ is: