For inclined plane problems:
• Use force components along and perpendicular to the plane.
• Solve for friction using acceleration and the force equation.
1. Force Equation:
\[mg \sin 30^{\circ} - \mu mg \cos 30^{\circ} = ma.\]
2. Substitute Values: - \(a = \frac{g}{4}\), \(\sin 30^{\circ} = \frac{1}{2}\), \(\cos 30^{\circ} = \frac{\sqrt{3}}{2}\).
\[mg \frac{1}{2} - \mu mg \frac{\sqrt{3}}{2} = m \frac{g}{4}.\]
3. Solve for \(\mu\):
\[\frac{\sqrt{3}}{2}\mu=\frac{1}{4}\]
\[\mu=\frac{1}{2\sqrt{3}}\]
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is: