For inclined plane problems:
• Use force components along and perpendicular to the plane.
• Solve for friction using acceleration and the force equation.
1. Force Equation:
\[mg \sin 30^{\circ} - \mu mg \cos 30^{\circ} = ma.\]
2. Substitute Values: - \(a = \frac{g}{4}\), \(\sin 30^{\circ} = \frac{1}{2}\), \(\cos 30^{\circ} = \frac{\sqrt{3}}{2}\).
\[mg \frac{1}{2} - \mu mg \frac{\sqrt{3}}{2} = m \frac{g}{4}.\]
3. Solve for \(\mu\):
\[\frac{\sqrt{3}}{2}\mu=\frac{1}{4}\]
\[\mu=\frac{1}{2\sqrt{3}}\]
Let A be a 3 × 3 matrix such that \(\text{det}(A) = 5\). If \(\text{det}(3 \, \text{adj}(2A)) = 2^{\alpha \cdot 3^{\beta} \cdot 5^{\gamma}}\), then \( (\alpha + \beta + \gamma) \) is equal to:
