For inclined plane problems:
• Use force components along and perpendicular to the plane.
• Solve for friction using acceleration and the force equation.
1. Force Equation:
\[mg \sin 30^{\circ} - \mu mg \cos 30^{\circ} = ma.\]
2. Substitute Values: - \(a = \frac{g}{4}\), \(\sin 30^{\circ} = \frac{1}{2}\), \(\cos 30^{\circ} = \frac{\sqrt{3}}{2}\).
\[mg \frac{1}{2} - \mu mg \frac{\sqrt{3}}{2} = m \frac{g}{4}.\]
3. Solve for \(\mu\):
\[\frac{\sqrt{3}}{2}\mu=\frac{1}{4}\]
\[\mu=\frac{1}{2\sqrt{3}}\]
Consider the following two reactions A and B: 
The numerical value of [molar mass of $x$ + molar mass of $y$] is ___.
Consider an A.P. $a_1,a_2,\ldots,a_n$; $a_1>0$. If $a_2-a_1=-\dfrac{3}{4}$, $a_n=\dfrac{1}{4}a_1$, and \[ \sum_{i=1}^{n} a_i=\frac{525}{2}, \] then $\sum_{i=1}^{17} a_i$ is equal to
