Step 1: Use work-energy theorem. All kinetic energy is used against friction and gravity:
\[
\text{Work done} = \text{Loss of kinetic energy} = 100\,\text{J}
\]
Step 2: Total resisting force = \( mg\sin\theta + \mu mg\cos\theta \)
Given:
- \( m = 5\,\text{kg},\ \mu = 0.5,\ \theta = 45^\circ \)
- \( \sin 45^\circ = \cos 45^\circ = \frac{1}{\sqrt{2}} \)
So:
\[
F = 5 \cdot 10 \left( \frac{1}{\sqrt{2}} + 0.5 \cdot \frac{1}{\sqrt{2}} \right)
= 50 \cdot \frac{3}{2\sqrt{2}} = \frac{75}{\sqrt{2}}
\]
Step 3: Let stopping distance be \(s\):
\[
\frac{75}{\sqrt{2}} \cdot s = 100 \Rightarrow s = \frac{100 \sqrt{2}}{75} = \frac{4\sqrt{2}}{3}
\]