\( 270 \) kPa
Step 1: Using Gay-Lussac’s Law (Pressure-Temperature Relationship). \[ \frac{P_1}{T_1} = \frac{P_2}{T_2} \] where: - \( P_1 = 270 \) kPa (initial pressure), - \( T_1 = 27^\circ C = (27 + 273) = 300 K \) (initial temperature), - \( T_2 = 36^\circ C = (36 + 273) = 309 K \) (final temperature), - \( P_2 \) is the final pressure.
Step 2: Solve for \( P_2 \). \[ P_2 = P_1 \times \frac{T_2}{T_1} \] \[ P_2 = 270 \times \frac{309}{300} \] \[ P_2 = 270 \times 1.03 \] \[ P_2 = 278.1 { kPa} \approx 278 { kPa} \]
Final Answer: \[ \boxed{278 { kPa}} \]