Let \( n_1 \) maxima of 7000 \(\AA\) coincide with \( n_2 \) maxima of 5500 \(\AA\).
Therefore, \( n_1 \beta_1 = n_2 \beta_2 \),
\[
\frac{n_1}{n_2} = \frac{\lambda_2}{\lambda_1} = \frac{5500}{7000} = \frac{11}{14}
\]
Hence, the 11th maximum of 7000 \(\AA\) coincides with the 14th maximum of 5500 \(\AA\).
To find the least distance from this,
\[
y = n_1 \beta_1 D / d
\]
\[
y = \frac{11 \times 7000 \times 10^{-10} \times 150 \times 10^{-2}}{2.5 \times 10^{-3}} = 462 \times 10^{-5} \, \text{m}
\]
Thus, \( n = 462 \)