Loss in kinetic energy equals gain in potential energy:
\(\frac{1}{2}mv^2 = mg\ell(1 - \cos \theta).\)
From the equation:
\(v^2 = 2g\ell(1 - \cos \theta).\)
Acceleration at the lowest point is given by:
\(\text{Acceleration} = \frac{v^2}{\ell} = 2g(1 - \cos \theta).\)
Acceleration at the extreme point:
\(a = g \sin \theta.\)
Equating the magnitudes of acceleration:
\(2g(1 - \cos \theta) = g \sin \theta \implies \sin \theta = 2(1 - \cos \theta).\)
Simplifying gives:
\(\theta = 2 \tan^{-1} \left(\frac{1}{2}\right).\)
The Correct answer is: $2\tan^{-1}\left(\frac{1}{2}\right)$
Let $ f: \mathbb{R} \to \mathbb{R} $ be a twice differentiable function such that $$ f''(x)\sin\left(\frac{x}{2}\right) + f'(2x - 2y) = (\cos x)\sin(y + 2x) + f(2x - 2y) $$ for all $ x, y \in \mathbb{R} $. If $ f(0) = 1 $, then the value of $ 24f^{(4)}\left(\frac{5\pi}{3}\right) $ is: