Loss in kinetic energy equals gain in potential energy:
\(\frac{1}{2}mv^2 = mg\ell(1 - \cos \theta).\)
From the equation:
\(v^2 = 2g\ell(1 - \cos \theta).\)
Acceleration at the lowest point is given by:
\(\text{Acceleration} = \frac{v^2}{\ell} = 2g(1 - \cos \theta).\)
Acceleration at the extreme point:
\(a = g \sin \theta.\)
Equating the magnitudes of acceleration:
\(2g(1 - \cos \theta) = g \sin \theta \implies \sin \theta = 2(1 - \cos \theta).\)
Simplifying gives:
\(\theta = 2 \tan^{-1} \left(\frac{1}{2}\right).\)
The Correct answer is: $2\tan^{-1}\left(\frac{1}{2}\right)$
A particle is subjected to simple harmonic motions as: $ x_1 = \sqrt{7} \sin 5t \, \text{cm} $ $ x_2 = 2 \sqrt{7} \sin \left( 5t + \frac{\pi}{3} \right) \, \text{cm} $ where $ x $ is displacement and $ t $ is time in seconds. The maximum acceleration of the particle is $ x \times 10^{-2} \, \text{m/s}^2 $. The value of $ x $ is:
Two simple pendulums having lengths $l_{1}$ and $l_{2}$ with negligible string mass undergo angular displacements $\theta_{1}$ and $\theta_{2}$, from their mean positions, respectively. If the angular accelerations of both pendulums are same, then which expression is correct?
Match List-I with List-II.