To solve the problem, we need to determine the time at which the stone hits the ball, given their initial velocities and launch angles.
1. Equations of Motion:
Let the position of the ball at time $t$ be $(x_b, y_b)$, and the position of the stone be $(x_s, y_s)$. The equations for the motion of the ball and the stone are:
Ball: $x_b = v_0 \cos\theta_0 t$ and $y_b = v_0 \sin\theta_0 t - \frac{1}{2}gt^2$
Stone: $x_s = L - v_s \cos\theta_1 t$ and $y_s = v_s \sin\theta_1 t - \frac{1}{2}gt^2$
2. Conditions for the Stone to Hit the Ball:
For the stone to hit the ball, their positions must be equal at some time $t$, i.e., $x_b = x_s$ and $y_b = y_s$ at that time.
3. Solving for $t$:
From the $x$-position equation:
$$ v_0 \cos\theta_0 t = L - v_s \cos\theta_1 t \Rightarrow v_0 \cos\theta_0 t + v_s \cos\theta_1 t = L $$
From the $y$-position equation:
$$ v_0 \sin\theta_0 t - \frac{1}{2}gt^2 = v_s \sin\theta_1 t - \frac{1}{2}gt^2 \Rightarrow v_0 \sin\theta_0 t = v_s \sin\theta_1 t $$
So we have:
$$ v_s = \frac{v_0 \sin\theta_0}{\sin\theta_1} $$
4. Substituting into the $x$-equation:
Substituting $v_s = \frac{v_0 \sin\theta_0}{\sin\theta_1}$ into the $x$-equation:
$$ v_0 \cos\theta_0 t + \frac{v_0 \sin\theta_0}{\sin\theta_1} \cos\theta_1 t = L $$
Factor out $v_0$:
$$ v_0 (\cos\theta_0 + \sin\theta_0 \cot\theta_1)t = L $$
Solving for $t$, we get:
$$ t = \frac{L}{v_0 (\cos\theta_0 + \sin\theta_0 \cot\theta_1)} $$
5. Case 1: $\theta_0 = 45^\circ$, $\theta_1 = 45^\circ$:
For $\theta_0 = 45^\circ$ and $\theta_1 = 45^\circ$, we have:
$$ t = T_1 = \frac{L}{v_0 \left(\cos 45^\circ + \sin 45^\circ \cot 45^\circ \right)} = \frac{L}{v_0 \left(\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} (1)\right)} = \frac{L}{v_0 \frac{2}{\sqrt{2}}} = \frac{L}{v_0 \sqrt{2}} $$
6. Case 2: $\theta_0 = 60^\circ$, $\theta_1 = 30^\circ$:
For $\theta_0 = 60^\circ$ and $\theta_1 = 30^\circ$, we have:
$$ t = T_2 = \frac{L}{v_0 \left(\cos 60^\circ + \sin 60^\circ \cot 30^\circ\right)} = \frac{L}{v_0 \left(\frac{1}{2} + \frac{\sqrt{3}}{2} (\sqrt{3})\right)} = \frac{L}{v_0 \left(\frac{1}{2} + \frac{3}{2}\right)} = \frac{L}{v_0 (2)} $$
7. Ratio of Times:
Now, we compute the ratio of the times:
$$ \left(\frac{T_1}{T_2}\right)^2 = \left(\frac{\frac{L}{v_0 \sqrt{2}}}{\frac{L}{2v_0}}\right)^2 = \left(\frac{2}{\sqrt{2}}\right)^2 = (\sqrt{2})^2 = 2 $$
8. Final Answer:
The final answer is $\boxed{2}$.
To solve the problem, we need to compare the square of the ratio of times taken by a stone to hit a ball for two different sets of launch angles.
1. Understanding the Problem Setup:
- A ball is projected from the origin (0, 0) at speed $v_0$ and angle $\theta_0$.
- A stone is thrown from point $(L, 0)$ towards the ball with angle $(180^\circ - \theta_1)$.
- The collision happens in mid-air at time $T_1$ or $T_2$ depending on the angles.
2. Parametric Coordinates of Ball:
For the ball projected from origin at angle $\theta_0$ and speed $v_0$:
$x_b(t) = v_0 \cos \theta_0 \cdot t$
$y_b(t) = v_0 \sin \theta_0 \cdot t - \frac{1}{2}gt^2$
3. Parametric Coordinates of Stone:
Let the speed of stone be $v_s$, thrown at angle $(180^\circ - \theta_1)$:
$x_s(t) = L - v_s \cos \theta_1 \cdot t$
$y_s(t) = v_s \sin \theta_1 \cdot t - \frac{1}{2}gt^2$
4. Condition for Collision:
For the stone to hit the ball at time $t$, their x- and y-coordinates must be the same:
$v_0 \cos \theta_0 \cdot t = L - v_s \cos \theta_1 \cdot t$
$β t (v_0 \cos \theta_0 + v_s \cos \theta_1) = L$
$β t = \frac{L}{v_0 \cos \theta_0 + v_s \cos \theta_1}$
5. Matching y-coordinates:
$y_b(t) = y_s(t)$
Since vertical motion must also match at collision point, equating the vertical components:
$v_0 \sin \theta_0 = v_s \sin \theta_1$
$β v_s = \frac{v_0 \sin \theta_0}{\sin \theta_1}$
6. Substituting $v_s$ into $t$:
$t = \frac{L}{v_0 \cos \theta_0 + \frac{v_0 \sin \theta_0}{\sin \theta_1} \cos \theta_1 }$
$= \frac{L}{v_0 \left[ \cos \theta_0 + \frac{\sin \theta_0 \cos \theta_1}{\sin \theta_1} \right]}$
7. Time Expressions:
Letβs define:
$T = \frac{L}{v_0 \cdot f(\theta_0, \theta_1)}$, where:
$f(\theta_0, \theta_1) = \cos \theta_0 + \frac{\sin \theta_0 \cos \theta_1}{\sin \theta_1}$
8. Compute $T_1$ and $T_2$:
- Case 1: $(\theta_0, \theta_1) = (45^\circ, 45^\circ)$
$f_1 = \cos 45^\circ + \frac{\sin 45^\circ \cos 45^\circ}{\sin 45^\circ} = \cos 45^\circ + \cos 45^\circ = 2 \cdot \frac{1}{\sqrt{2}} = \sqrt{2}$
- Case 2: $(\theta_0, \theta_1) = (60^\circ, 30^\circ)$
$f_2 = \cos 60^\circ + \frac{\sin 60^\circ \cos 30^\circ}{\sin 30^\circ}$
$\cos 60^\circ = \frac{1}{2}$, $\sin 60^\circ = \frac{\sqrt{3}}{2}$, $\cos 30^\circ = \frac{\sqrt{3}}{2}$, $\sin 30^\circ = \frac{1}{2}$
$f_2 = \frac{1}{2} + \frac{\frac{\sqrt{3}}{2} \cdot \frac{\sqrt{3}}{2}}{\frac{1}{2}} = \frac{1}{2} + \frac{3/4}{1/2} = \frac{1}{2} + \frac{3}{2} = 2$
9. Ratio of Times:
$T_1 \propto \frac{1}{f_1} = \frac{1}{\sqrt{2}}$
$T_2 \propto \frac{1}{f_2} = \frac{1}{2}$
$ \left( \frac{T_1}{T_2} \right)^2 = \left( \frac{1/\sqrt{2}}{1/2} \right)^2 = \left( \frac{2}{\sqrt{2}} \right)^2 = ( \sqrt{2} )^2 = 2 $
Final Answer:
$ \left( \frac{T_1}{T_2} \right)^2 = \boxed{2} $
Figure 1 shows the configuration of main scale and Vernier scale before measurement. Fig. 2 shows the configuration corresponding to the measurement of diameter $ D $ of a tube. The measured value of $ D $ is:
The center of a disk of radius $ r $ and mass $ m $ is attached to a spring of spring constant $ k $, inside a ring of radius $ R>r $ as shown in the figure. The other end of the spring is attached on the periphery of the ring. Both the ring and the disk are in the same vertical plane. The disk can only roll along the inside periphery of the ring, without slipping. The spring can only be stretched or compressed along the periphery of the ring, following Hookeβs law. In equilibrium, the disk is at the bottom of the ring. Assuming small displacement of the disc, the time period of oscillation of center of mass of the disk is written as $ T = \frac{2\pi}{\omega} $. The correct expression for $ \omega $ is ( $ g $ is the acceleration due to gravity):