To solve this problem, we need to determine the relationship between the time taken to fall the first half of the distance and the second half of the distance for a freely falling ball (under gravity). Let's break down the solution step-by-step:
Therefore, the correct relationship is \(t_2 = (\sqrt{2} - 1) t_1\).
\(t_1=\frac{\sqrt2⋅\frac{H}{2}}{g}=\frac{\sqrt{H}}{g}\)
\(t_2=\frac{\sqrt{2H}}{g}−t_1\)
\(⇒t_2=\frac{\sqrt{2H}}{g}−\frac{\sqrt{H}}{g}\)
\(⇒t2=√Hg{√2−1}\)
\(⇒t2=(√2−1)t1\)
So, the correct option is (D): t2 =(√2−1)t1
Two circular discs of radius \(10\) cm each are joined at their centres by a rod, as shown in the figure. The length of the rod is \(30\) cm and its mass is \(600\) g. The mass of each disc is also \(600\) g. If the applied torque between the two discs is \(43\times10^{-7}\) dyne·cm, then the angular acceleration of the system about the given axis \(AB\) is ________ rad s\(^{-2}\).

Method used for separation of mixture of products (B and C) obtained in the following reaction is: 
Formula to find distance between two parallel line:
Consider two parallel lines are shown in the following form :
\(y = mx + c_1\) …(i)
\(y = mx + c_2\) ….(ii)
Here, m = slope of line
Then, the formula for shortest distance can be written as given below:
\(d= \frac{|c_2-c_1|}{\sqrt{1+m^2}}\)
If the equations of two parallel lines are demonstrated in the following way :
\(ax + by + d_1 = 0\)
\(ax + by + d_2 = 0\)
then there is a little change in the formula.
\(d= \frac{|d_2-d_1|}{\sqrt{a^2+b^2}}\)